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Abstract. Precision farming, a fast growing technique, is based 

on within-fi eld variability at the fi eld or farm scale and demands 

some information about soil physical and chemical properties. In 

this paper, we present the use of visible and near infrared refl ec-

tion spectroscopy (VIS-NIRS) in the 400–2200 nm spectral range 

to predict soil acidity, available Mg, P, and K content, soil or-

ganic carbon (SOC) content, and soil clay fraction (<0.002 mm) 

content, and then present an on-the-go spectrophotometer for in 

situ measurements of refl ectance spectra. Some optimistic pre-

liminary results have been obtained for the prediction of SOC, 

clay, available Mg, and K content with r2 (predicted vs. measured 

values) varying from 0.64 to 0.69. Results also emphasise the im-

portance of the calibration scheme.
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INTRODUCTION

 Management of agricultural systems is dependent on 

demands to control the cost of production and to increase 

productivity. To obtain a better response from inputs in 

agriculture, numerous analyses are needed so that those 

inputs can be applied where they best fi ll their purpose 

(van Vuuren et al., 2006). VIS-NIRS technology has the 

potential to detect fi ne-scale spatial variability of soil. Fur-

thermore, results can be very accurate as Viscarra Rossel 

and McBratney (2008) have shown in their review. Unfor-

tunately, transition from standard soil testing approach to 

the adoption of VIS-NIRS method for precision agriculture 

need a shift of mentality as underlined by van Vuuren et al. 

(2006).
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 VIS-NIRS has been used in agriculture for assessing 

grain, fertilisers and soil qualities (Ben-Dor and Banin, 

1995; Faraji et al., 2004; Mohan et al., 2005) and has 

proven to be a rapid, convenient means of analysing many 

soil constituents at the same time. Soil properties that have 

been calibrated with VIS-NIRS include the determina-

tion of soil moisture, SOC content, electrical conductivity 

(EC), cation exchange capacity (CEC), soil acidity, some 

macro- and microelements (Dunn et al., 2002; Velasquez et 

al., 2005). 

 Absorption in the near-infrared spectral region (780–

2500 nm) is dominated by molecules that contain strong 

bonds between light atoms. Specifi cally, these are mol-

ecules that contain C-H, N-H or O-H bonds. This makes 

the near infrared region particularly useful for measuring 

forms of carbon, nitrogen and water. VIS-NIRS is a rapid 

and non-destructive analytical technique that correlates 

diffusely refl ected near-infrared radiation with the chemi-

cal and physical properties of materials (Chang and Laird, 

2002). One interesting advantage of VIS-NIRS is that the 

size of spectrometers is rather small so that they can be 

fi eld-portable (Christy, 2008).

 The objective of this work was to investigate the use-

fulness of VIS-NIRS in determining various soil chemical 

property (SOC content, soil acidity, content of available 

Mg, K, and P) and a single physical properties (clay con-

tent) in topsoil (0–25 cm) from a soil sampling grid fi eld. 

With that aim in mind, two calibration schemes have been 

elaborated. Results discrepancies between the two calibra-

tion schemes are discussed in relation to predicted sample 

localisation and soil texture variability.

MATERIAL AND METHODS

 Sample collection and preparation

 One hundred and twenty soil samples were collected 

from a soil sampling grid (Figure 1) in the experimental 

station of the Institute of Soil Science and Plant Cultivation 
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(IUNG) in Baborówko near Poznań (Wielkopolska, Po-

land). The grid belongs to fi eld no1 the area of which is 9 ha. 

The station conducts its fi eld trials on an area of 53,6 ha 

(3 fi elds) in the following crop rotation: winter wheat, 

spring barley and winter rape according to the rules of 

precision agriculture. IUNG uniform agrotechnics recom-

mendations for specifi c crop technologies and integrated 

agriculture rules are applied. The soil type at this station is 

a podzoluvisol (World Reference Base for Soil Resources 

– WRB). A considerable topsoil texture mosaic is observed 

on the whole research area but also on the fi eld no1 in ques-

tion. The soil grid is georeferenced by means of a global 

positioning system. Coordinates of the grid centre are 

N 52º35’1.6”, E 16º38’50.47”. Samples were collected in 

the topsoil (0–25 cm), air dried and no further treatments 

were applied in order to be able to compare results with 

on-the-go measures in the future. 

 Chemical analyses

 Chemical analyses of the samples were performed by 

the IUNG Main Chemical Laboratory in Puławy. The soil 

acidity values were measured potentiometrically in 1M KCl 

solution. Soil organic carbon content was determined by 

the Tiurin method (K dichromate digestion). The contents 

of available K, P, and Mg (mg 100 g-1 of soil) were deter-

mined in calcium lactate-extractable K, calcium lactate-ex-

tractable P, and calcium chloride-extractable Mg. The Mas-

tersizer 2000 apparatus with Hydro MU attachment from 

Fig. 1. Map illustrating the Baborówko fi eld and sample locations
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the Malvern Company was used for the laser diffraction 

method for particle size distribution. The Mastersizer 2000 

is designed for standard determination of grain size distri-

bution of particles within the size range of 0.002–2 mm. 

It makes use of laser light scattered on measured particles 

and converts it into particle size distribution. Measurements 

were made in three replications (a new portion of air-dry 

soil poured into the measuring system being treated as 

a replication). Calculations of particle size distribution were 

carried out using the Fraunhofer and Mie theories (in the 

case of Mie theory the refractive index of 1.57 and absorp-

tion index of zero were used). The laser light wavelength 

in the apparatus was 466 nm for blue and 633 nm for red 

light. Measurements (understood as averaging of 30 000 

images of laser light diffraction recorded by the detectors) 

lasted 60 s (30 s for blue and 30 s for red light) and were 

carried out directly one by one. 

 System overview

 The samples were scanned from 400 to 2220 nm with 

the Veris VIS-NIR spectrophotometer in bench top mode 

(Veris Technologies, Salina, KS, USA) by means of the 

Veris Spectrophotometer Software V1.69. The sample 

holder is placed against the face of the sapphire window 

of the shank module that contains a tungsten halogen lamp 

and fi bre optics for transmission to the spectrometer. Sam-

ples were scanned 20 times and averaged by the software 

and data were collected every 5.5 nm of the electromag-

netic spectrum. The absorbance of the scanned sample is 

given by the relation log (1/R) where R is the refl ectance.

 On-the-go machine 

 The Veris spectrophotometer acquires absorbance meas-

urements of soil while being pulled through the fi eld. It is 

built in a shank mounted on a toolbar, and pulled behind 

a tractor. The shank is lowered into the ground to approxi-

mately 7 cm and pulled through the soil at 6 to 10 km h-1. 

The device makes measurements through a sapphire win-

dow mounted on the bottom of the shank. The texture of 

the sapphire keeps it clean through its journey into the 

soil. The device is described at length in Christy (2008). 

The main feature of this spectrophotometer is the possibil-

ity to perform real-time measurements via NIR spectros-

copy. Another interesting feature is that all spectra pre-

treatments are realised on the fi eld i.e. (1) data extraction, 

(2) fi ltering, (3) clustering. Outliers are removed during the 

fi ltering process using Mahalanobis distance. The aim of 

these 3 steps is to determine the best soil sampling loca-

tion. According to spectral properties and principal compo-

nent analysis, with the help of a fuzzy c-means algorithm, 

clusters of observations are realised. There are as many 

samples locations as clusters. Each cluster is representative 

of the overall spectral variation (Naes, 1987). The number 

of clusters decided by the operator. The sample location 

is computed to be close to the centre of the cluster. These 

samples are needed to create VIS-NIRS calibrations for 

quantitative predictions. The last treatment is the interpo-

lation using Gaussian weighting to average spectra near 

a sampled location. Spectra near the location are weighted 

higher than spectra far away. Then the NIR calibration and 

validation methods are to be chosen by the operator and 

laboratory computed.

 VIS-NIRS calibration

 The spectrum from each sample was matched with lab-

oratory analysis data to create a database for calibrations. 

A multivariate calibration model is required to obtain some 

practical information from the VIS-NIRS spectra. The Par-

tial Least Square Regression (PLS), a popular multivariate 

calibration technique for quantitative analysis of NIR spec-

tral data, was used to determine the best correlation be-

tween the chemical data and spectra data. The PLS is a di-

mension reduction technique that seeks a set of latent vari-

ables by maximizing the covariance of two variable blocks 

(i.e., spectra X and concentration Y). Data were calibrated 

and tested using the R software – Version 2.11.1 (R Devel-

opment Core Team, Vienna) and the R pls package from 

Mevik and Wehrens (2007). The pls package implements 

a leave-one-out cross-validation on the calibration set. Ten 

components are taken into account for the PLS regression 

of the calibration models. In leave-one-out cross-valida-

tion each sample is omitted and predicted using a calibra-

tion made from the remaining samples. The number of 

components to use for validation is given by the root mean 

squared error of prediction (RMSEP) of the calibration set. 

The calibration models were then used to predict the chem-

ical parameters of the sample prediction sets.

 Two sets of calibration were prepared without outlier 

treatment and two sets with outlier detection based on 

a new method from Filzmoser et al. (2005). The method is 

automated to identify outliers in multivariate space and to 

distinguish between extreme values of a normal distribu-

tion and values originating from a different distribution.

RESULTS

 Three samples were not analysed for all chemical prop-

erties and therefore were removed from the sample data-

base leaving 117 samples. Sample names have not been 

changed so that they were easier to position on the map. 

Mean, standard deviation and ranges for each chemical 

and physical parameters are shown in Table 1. The SOC 

values displayed a narrow range 0.71–1.45% conforming 

with typical content levels of Polish soils. The mean clay 

content is generally lower than the usual content of Polish 

soils.

 Ten randomly selected soil sample spectra are present-

ed in Figure 2. As can be seen, the spectral bands largely 

G. Debaene et al. – Visible and near-infrared spectrophotometer for soil analysis
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overlap. The raw (log 1/R) spectra of all soils have similar 

shapes with the strongest absorption in the visible range 

and small peaks (e.g. 1400 and 1900 nm) in the near infra-

red region. One can deduce from this that spectral exploita-

tion is only possible with the help of advanced multivariate 

statistics. Three to fi ve components for the validation of the 

different calibration sets were generally suffi cient. As can 

be seen in Figure 3 which presents as an example the esti-

mated RMSEP as functions of the number of components 

for the SOC content of the fi rst series, four components 

seem to be enough.

Fig. 2. Near-infrared spectra of 10 randomly selected soil samples.
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Table 1. Chemical and physical characteristics of soil samples 

used in this study.

Variable Mean ± SD Range Mean ± SD Range

Series 1–2 Series 3–4

SOC 1.11 ± 0.20 0.71–1.80 1.08 ± 0.16 0.71–1.45

pH 6.22 ± 0.52 4.99–7.57 6.17 ± 0.47 5.00–7.48

Mg 6.63 ± 2.50 3.10–15.9 6.29 ± 1.97 3.10–12.4

K 13.91 ± 4.95 5.10–44.5 13.07 ± 3.68 5.10–23.4

P 14.40 ± 5.74 5.70–33.6 13.64 ± 4.92 5.70–26.2

clay 1.99 ± 0.82 0.10–3.67 1.95–0.80 0.10–3.38

117 samples were used without outlier detection: series 1 and 2

102 samples left after outlier detection: series 3 and 4

SD – standard deviation

pH – soil acidity

SOC – soil organic carbon content (% soil)

Mg, K, P – content of available Mg, K, P (mg 100 g-1 of soil)

clay – clay content (% soil < 0.002 mm)

Without outlier treatment
 The fi rst calibration was undertaken by taking the 

samples from the series as they come in sequence from 

the grid. The samples were divided into two sets. The 

fi rst 90 samples were used for calibration and the last 

27 samples of the series were used for the validation 
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of the calibration. The second calibration scheme was de-

signed as in Dunn et al. (2002). Starting from sample no1, 

data of every fourth sample were moved to a separate fi le 

for use as the validation set (30 samples). In that case, sam-

ples to be predicted are distributed evenly on the whole area 

of the fi eld. Coeffi cient of determination r2 and root mean 

squared error of prediction (RMSEP) of the two calibra-

tion procedures without outlier detection are given in Table 

2 and 3. RMSEP is an indicator of how close validation 

standards – standards that are not in the calibration – are to 

the calibration line. There are two results of prediction, the 

leave-one-out (r
1

2, RMSEP
1
) for the cross-validation of the 

calibration set and the validation for the prediction set (r
2

2, 

RMSEP
2
). It is to notice that sometimes for a small dataset, 

only the cross-validation r
1

2 and RMSEP
1
 are used to test 

the prediction ability of a model. 

 The best predictions (r
2

2) are achieved for soil organic 

carbon content (SOC) and for the content of available Mg 

for both the two calibration schemes. The fi rst scheme 

giving somewhat better predicted values. The calibration 

scheme of series 2 shown better predictive ability for avail-

able K and clay content than series 1. 

 It can be noticed that the prediction obtained for the sec-

ond series with the sample validation set evenly scattered 

in the fi eld (calibration scheme 2) are overall better than for 

the fi rst series where the sample validation set focused on 

the western border of the fi eld (calibration scheme 1). With 

the fi rst scheme, four of six properties were very poorly 

predicted or not at all for the content of available P, but pre-

sented reasonable cross-validated prediction r
1

2 (Table 2).

With outlier treatment
 Because in large databases outliers can be easily unno-

ticed, we decided to check for outliers using the Filzmoser 

et al. (2005) method. All outliers detected were removed 

(circles in Figure 1) on the base of their chemical proper-

ties. Calibration schemes are the same as above. It gives 

for scheme 1 a calibration set of 85 samples with a valida-

tion set containing 17 samples (series 3) and for scheme 

2 a calibration set of 78 samples with a validation set of 

24 samples. Table 4 and 5 present the r2 and RMSEP
 
for 

the two calibration with outliers detection. The prediction 

of series 3 without outliers are worse than the prediction 

with all samples, especially the regression coeffi cient of 

the validation sets (r
2

2). All chemical properties but SOC 

were not or very poorly predicted. It is to notice that the r
1

2 

are much better than the r
2

2 and sometimes even satisfac-

tory (Mg or SOC content). The calibration scheme 2 of the 

fourth series of samples predicted the SOC and available K 

content. All other cross-validated and predicted properties 

were unsatisfactory (r2 0.30–0.48).

 Overall, the calibration scheme 2 is better working with 

or without outliers.

Table 2. Calibration and prediction results for soil properties: 

series 1.

Variable r
1

2 RMSEP
1

r
2

2 RMSEP
2

SOC 0.61 0.11 0.65 0.14

pH 0.55 0.36 0.24 0.49

Mg 0.71 1.14 0.69 2.16

K 0.51 3.63 0.29 4.15

P 0.41 4.61 0.01 5.42

clay 0.61 0.50 0.30 0.58

pH – soil acidity

SOC – soil organic carbon content (% soil)

Mg, K, P – content of available Mg, K, P (mg 100 g-1 of soil)

clay – clay content (% soil < 0.002 mm)

r
1

2 – calibration set regression, r
2

2 – validation set regression, 

RMSEP – root mean squared error of prediction

Table 3. Calibration and prediction results for soil properties: 

series 2.

Variable r
1

2 RMSEP
1

r
2

2 RMSEP
2

SOC 0.64 0.12 0.50 0.14

pH 0.38 0.39 0.40 0.46

Mg 0.69 1.39 0.51 1.50

K 0.42 3.96 0.61 3.05

P 0.28 4.75 0.40 5.10

clay 0.60 0.53 0.64 0.48

Explanations – see Table 2

Table 4. Calibration and prediction results for soil properties: 

without outlier, series 3.

Variable r
1

2 RMSEP
1

r
2

2 RMSEP
2

SOC 0.60 0.10 0.56 0.13

pH 0.47 0.35 0.02 0.46

Mg 0.69 1.02 0.38 2.39

K 0.57 2.43 0.31 2.98

P 0.41 3.76 0.07 5.24

clay 0.51 0.55 0.02 0.96

Explanations – see Table 2

Table 5. Calibration and prediction results for soil properties: 

without outlier, series 4.

Variable r
1

2 RMSEP
1

r
2

2 RMSEP
2

SOC 0.48 0.11 0.68 0.11

pH 0.39 0.36 0.30 0.40

Mg 0.48 1.34 0.48 1.63

K 0.45 2.49 0.68 2.64

P 0.34 3.96 0.32 4.36

clay 0.36 0.41 0.48 0.60

Explanations – see Table 2

G. Debaene et al. – Visible and near-infrared spectrophotometer for soil analysis
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DISCUSSION

 Results have pointed out that the type of calibration and 

the use of outlier detection have an important impact on the 

validity of prediction of the chemical and physical prop-

erties of soil samples with NIRS technology. Differences 

between results of the two calibration can be explained as 

follows. The validation set of the fi rst scheme was com-

posed of samples situated on the edge of the studied area, 

and not included in the calibrated area. On the other hand, 

the validation samples of the second scheme were spread 

on the whole area and therefore included in the calibration 

area. In the light of our results, and even if regression coef-

fi cients are not absolutely satisfying, it appears that evenly 

scattered sample datasets are better predicted than sample 

grouped on the edge of the studied area. This seems logical 

because of the better representation of chemical and physi-

cal properties in both calibration and validation sets for 

scattered samples.

 The fi rst scheme with all samples has failed to predict 

most of the soil properties but SOC and Mg content. In ad-

dition to the fact that predicted samples are outside the cali-

bration area, as said above, samples 94 to 98, from a region 

of high topsoil texture variability present higher content of 

clay, available P and K but also Mg. Those fi ve samples 

have a great impact on the regression result. Removing 

them improves the prediction. In the future more impor-

tance should be given to this region of complicated mosaic 

topsoil texture. More samples are needed to be sampled 

in this part of the fi eld to better represent the overall vari-

ability of topsoil characteristics and then to improve the 

prediction ability of the calibration model. 

 The third and fourth series of calibration were obtained 

with an outlier treatment. Fifteen samples were removed 

from the dataset. As can be seen in Figure 1, most of out-

liers are situated on the border and in the northern part of 

the fi eld. This can be explained by the fact that other fi eld 

trials are conducted on neighbour fi elds and some con-

tamination may occur. Moreover, some of these outliers 

are located in depleted region (tractor tracks) where some-

times water accumulates and in an area with sandy loam 

and slightly loamy sand. The effect of water and clay on 

the other soil properties are that some characteristics are 

unusually high and are detected as outlier by the algorithm 

probably without actually being so. As explained above, 

samples 94 to 98 are somewhat outside the range of values 

of the soil characteristics. This is another clue as to sample 

more this part of the fi eld and it shows that choosing sam-

pling location is an essential task in VIS-NIRS.

 It seems, in the light of the prediction results that scheme 

1 without outliers poorly predicts soil characteristics but 

for SOC (Table 4). Nevertheless, some properties seems to 

be predicted with the leave-one-out cross-validation. How-

ever, as stated by Dardenne et al., (2000) there is always an 

over estimation of cross-validation when no validation sets 

are taken into account. Doing a cross-validation with the 

calibration and validation set together even improves the 

cross-validation prediction. The reason for the poorly pre-

dicted results can be the fact that there are not enough sam-

ples in the calibration set and that removing the outliers is 

narrowing too much the range of the chemical and physical 

characteristics, as regression is generally improved when 

data are widespread.

 Scheme 2 greatly improved the prediction of all proper-

ties with outlier detection. 

 Overall, the results of the present study are preliminary 

and can be improved. One hundred and twenty samples 

seemed to be enough for that work since most studies re-

viewed by Viscarra Rossel and McBratney (2008) included 

100 to 200 samples. Some of the samples which seem to be 

far of the regression line will soon be re-analysed, scanned 

once more and then reinserted in the calibration model. 

The authors have tried to add several more samples to the 

models (but unfortunately from another neighbouring fi eld) 

with a great improvement of the prediction results except 

for available P. The lack of prediction of available P can 

be related to the fact that the variable is poorly distributed 

in comparison with other variables presented in this work. 

The same reason was assumed by Dunn et al. (2002) for 

exchangeable Na. In some cases, removing few samples 

could greatly improve the accuracy of the prediction. Other 

outlier removing strategies need also to be checked. A data 

pre-treatment as the one from Chang et al. (2001) increase 

prediction regression for some properties (e.g. r2 = 0.82 for 

SOC). Nevertheless, our results for prediction of SOC, clay, 

available Mg and K content are similar to that of Chang et 

al. (2001) and of Dunn et al. (2002) even if their studies 

were based on samples from a much wider area. This work 

is also a fi rst step towards the analysis in situ with the on-

the-go VIS-NIRS spectrophotometer. Some maps of chemi-

cal properties and especially of the carbon content will be 

realised and compared with on-the-go maps.

 Results presented above are preliminary in nature, 300 

more samples from the soil grid (3 fi elds) will be ana-

lysed later, added to the calibration, and compared with 

the results that will be measured in situ with the on-the-go 

spectrophotometer. With this aim in mind, the on-the-go 

spectrophotometer for in situ measurements of refl ectance 

spectra is also described in this paper.

CONCLUSIONS

 In the view of our results, near-infrared refl ectance 

spectrometry is a simple to implement, non-destructive 

method that could be used to predict some soil properties.

Results of this study have pointed out that:

 1. VIS-NIRS is a suitable method for estimating SOC, 

clay, available Mg and K content; 
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 2. The calibration scheme is very important and cali-

bration samples should encompass the whole spectrum of 

chemical and physical characteristics of the soil;

 3. More attention has to be paid to areas with impor-

tant soil texture variability;

 4. Outlier detection is not always the best way to ob-

tain a good prediction. 
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